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A digital four-step phase-shifting method for obtaining the
optical phase distribution from a single fringe pattern is
proposed in this Letter. By computing the first-, second-,
and third-order Riesz transform components for a given
fringe pattern, three π∕2 phase-shifted fringe patterns are
generated from the obtained Riesz components and, finally,
the wrapped phase map is extracted. The validity of the pro-
posed method is demonstrated on both the simulated and
experimentally obtained fringe patterns. The performance
of the proposed method is evaluated by using the image
quality index and edge preservation index. Further, the per-
formance of the proposed method is tested on speckled cor-
relation fringes obtained from digital speckle pattern
interferometry, and the resulting phase from the proposed
method is compared with the phase obtained from three
experimentally recorded phase-shifted fringe patterns.
The obtained results reveal that the proposed method pro-
vides a simple and robust solution for optical phase extrac-
tion from a single fringe pattern with good accuracy
and, therefore, make it suitable for real-time measurement
applications. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.003434

Over the years, interferometric techniques such as digital
speckle pattern interferometry (DSPI) and digital holographic
interferometry, have been playing a major role in solving a
rather large number of problems for scientific, engineering,
and industrial applications, namely, the determination of ma-
terials properties, nondestructive testing of materials, structural
analysis, experimental mechanics for strain, displacement evalu-
ation [1–7], etc. The desired physical parameter to be measured
is related to the phase map encoded in the intensity distribution
of the recorded fringe pattern. Various techniques/methods
have been proposed to retrieve and evaluate this optical phase.
These are classified mainly in two important families: the first is
the phase-shifting technique which is used to record more than
one phase-shifted fringe pattern [7–10], while the second ex-
ploits a single fringe pattern from which the desired phase dis-
tribution is found. The conventional phase-shifting techniques

have been widely used in many areas of precise interferometric
metrology, but they face some crucial drawbacks such as being
quite susceptible to atmospheric turbulence and, hence, more
sensitive to environmental disturbances. Moreover, these tech-
niques are difficult to implement in the study of dynamic
and fast transient phenomena, and make the system more com-
plicated and error-prone. A single-shot parallel phase-shifting
interferometry from a single interferogram was proposed [11],
providing promising results for the investigations of dynamic
events [12]. The phase evaluation from a single fringe pattern
can be realized by either of two methods: the first introduces a
high-frequency spatial carrier to generate a modulated fringe
pattern, and then demodulate it in the frequency domain
using Fourier or wavelets transform [13–15]. The second ex-
tracts the phase without introducing a spatial carrier using a
monogenic signal [3–5,16].

Takeda et al. [13] proposed the analysis of interferograms in
the Fourier domain by computing its Fourier transform, whose
band filter needs to be built in many cases to enhance the sig-
nal-to-noise ratio. Other researchers exploit wavelets domain to
demodulate the interferograms: Ghlaifan et al. [14] exploit dis-
crete wavelet transforms by using Gabor’s function as the
mother wavelet, whereas Affifi et al. [15] applies the continuous
wavelets transform using Paul’s wavelets. For the wavelet trans-
form, the mother wavelet function, its scale and shift parameter
need to be found in advance to obtain a better-recovered phase
information. Besides these, the works in Refs. [3–5] exploit the
monogenic signal theory to retrieve the phase distribution from
digital speckle pattern interferometric (DSPI) fringes.

In this Letter, we propose a digital four-step phase-shifting
method (D4-PS) based on the first-, second-, and third-order
Riesz transform for the extraction of the phase distribution
from a single fringe pattern. The Riesz transform is the two-
dimensional extension of the Hilbert transform [16]. We con-
sider a fringe pattern with intensity distribution denoted as
f �x, y� and expressed as

f �x, y� � a�x, y� � b�x, y� · cos φ�x, y�, (1)

where a�x, y� is an intensity bias, b�x, y� is the visibility,
and φ�x, y� is the phase distribution containing the desired
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information. The first-order Riesz kernels of a fringe pattern
along the x- and y-directions are defined, respectively, as

rx �
−x

2π�x2 � y2�3∕2 ; ry �
−y

2π�x2 � y2�3∕2 : (2)

The first-order Riesz transform of the fringe pattern f �x, y� is
computed as

R1�f �x, y�� �
�
f1 � rx � f �x, y�
f2 � ry � f �x, y� , (3)

where R1 represents the first-order Riesz operator, * stands for
the convolution product, and f1, f2 are the horizontal and ver-
tical Riesz components for the input fringe pattern, f �x, y�.

The second-order Riesz transform of the input fringe
pattern f �x, y� is computed as

R2�f �x, y�� �
8<
:

f3 � rx � �rx � f �x, y��
f4 � ry � �rx � f �x, y��
f5 � ry � �ry � f �x, y��

, (4)

where R2 represents the second-order Riesz operator. f3, f4,
and f5 are the second-order Riesz components of the input
fringe pattern.

The third-order Riesz transform is computed as

R3�f �x, y�� �

8>><
>>:

f6 � rx � rx � �rx � f �x, y��
f7 � rx � rx � �ry � f �x, y��
f8 � rx � ry � �ry � f �x, y��
f9 � ry � ry � �ry � f �x, y��

, (5)

where R3 represents the third-order Riesz operator. f6, f7, and
f8 and f9 are the third-order Riesz components of the input
fringe pattern.

The first-, second-, and the third-order Riesz transform com-
ponents, respectively, provide two, three, and four components,
in accordance with the Riesz transform theory that states that the
nth-order Riesz transform gives n� 1 components [16]. Thus,
from the three Riesz transform orders (R1, R2, and R3) of the
input/single fringe pattern, nine components, f1�x, y�, f2�x, y�,
f3�x, y�, f4�x, y�, f5�x, y�, f6�x, y�, f7�x, y�, f8�x, y�, and
f9�x, y�, are obtained. Using the following equations to combine
the components for each order result in three π∕2 shifted fringe
patterns:

f �x,y,π∕2��a�x,y�−b�x,y� ·sinφ�x,y�� sgn�u� ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1�f 2

2

q
,

(6a)

f �x, y,π� � a�x, y� − b�x, y� · cos φ�x, y� � sgn�v� · �f3 � f5�,
(6b)

f �x,y,3π∕2��a�x,y��b�x,y�·sinφ�x,y��sgn�w�·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
6�f 2

9

q
,

(6c)

where u � f1, f2, v � f3, f4, f5, w � f6, f7, f8, f9, and ‘sgn’ is
the sign (signum) function defined as

sign�x� �
8<
:

−1; x < 0
0; x � 0
1; x > 0

: (7)

The proposed method to obtain three phase-shifted fringe
patterns from a single fringe pattern using the Riesz transform

is schematically explained in Fig. 1 so that, together with the
original input fringe pattern, four shifted patterns are available.
The modulo 2π phase distribution is evaluated by

φ�x, y� � arctan

�
f �x, y, 3π∕2� − f �x, y, π∕2�

f �x, y, 0� − f �x, y, π�

�
: (8)

The method is verified first on a simple fringe pattern, shown
in Fig. 2, simulated using a linear phase distribution whose
corresponding cross-sectional plot is shown at the bottom.
Figure 3 (right column) shows the resulting three π∕2 phase-
shifted fringe patterns obtained by using the proposed method,
along with their cross-sectional plots. Figure 3 (left column)
shows the real π∕2 phase-shifted fringe patterns with their
cross-sectional plots.

The original fringe pattern and the obtained three π∕2
phase-shifted patterns are used to extract, through Eq. (8), the
wrapped phase distribution shown in Fig. 4(a). Figure 4(b)
shows the wrapped phase obtained from the three real
phase-shifted fringe patterns, shown in Fig. 3 (left column).
The wrapped phase distribution is continuous between 0
and 2π with the phase discontinuity removed using the phase
unwrapping max-flow algorithm (PUMA) [17]. The continu-
ous unwrapped phase for Fig. 3 (right column) is shown in
Fig. 4(c), while Fig. 4(d) presents the real unwrapped phase
distribution for the real π∕2 phase-shifted fringe patterns
shown in Fig. 3 (left column). The plots of the wrapped
and unwrapped phases for both cases along line AB are shown
in Fig. 4(e), showing that the obtained phase distribution from

Fig. 1. Explaining the scheme of the proposed technique.

Fig. 2. Simulated fringe pattern and its corresponding cross section.
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the proposed method is in very good agreement with the actual
(real) phase distribution. A phase error of 0.63 is calculated be-
tween the phase obtained with the proposed method and the
corresponding real phase. Moreover, for completeness, the per-
formance of obtaining the phase distributions from a single
fringe pattern by the proposed method is quantified by two
criteria: the quality (Q) index and the edge preservation index
(EPI) [18]. The Q index measures the image distortion by
taking into account the loss of correlation, luminance distortion,
and contrast distortion between two images. The Q index takes
the values between −1 and 1, where Q � 1 means that f and
fout are similar and 100% correlated. On the other hand, EPI
measures the edge preservation; its value is in the range [0,1],
where 1 is satisfied for an exact edge. The ratio Q∕EPI obtained
in this case are 0.968/0.981, 1/1, 0.986/0.991, and 0.987/
0.999, respectively, for π∕2, π and 3π∕2 phase-shifted fringes,
and the retrieved wrapped phases, respectively.

The performance of the proposed method is also evaluated
by considering several simulated fringe patterns shown in

Figs. 5(a1)–5(a4), 5(b1)–5(b4), 5(c1)–5(c4), and 5(d1)–5(d4),
respectively, which show the input fringe patterns, π∕2, π, and
3π∕2 phase-shifted fringe patterns obtained from the proposed
method. Figures 5(e1)–5(e4) show the obtained wrapped phase
distributions, and Figs. 5(f1)–5(f4) show the corresponding un-
wrapped phase distributions obtained by using the proposed
method, whereas Figs. 5(g1)–5(g4) show the real unwrapped
phase distributions.

Furthermore, the proposed method is evaluated on fringe
patterns experimentally obtained using DSPI, which has been
considered as a powerful technique for non-contact characteri-
zation of materials surfaces and physical parameter measure-
ments [3–5]. Figure 6(a) shows a simulated speckle fringe
pattern. As it is well known, DSPI data are characterized by
residual speckle noise that influences the analysis step and,
for this reason, we used a recently proposed method based
on the Riesz wavelets transform thresholding technique to filter
the speckle noise from the DSPI fringe patterns [19]. The
denoised DSPI fringe pattern is shown in Fig. 6(b).
Figures 6(c)–6(e) show the three π∕2 phase-shifted fringe pat-
terns obtained by the proposed method, and Fig. 6(f ) shows the
obtained wrapped distribution corresponding to the fringe

Fig. 3. Shifted fringe patterns and their corresponding cross-sec-
tional plots. Left column: real phase-shifted fringe patterns. Right col-
umn: phase-shifted fringe patterns generated using the Riesz transform
method.

Fig. 4. Retrieved phase using (a) the proposed method and (b) the
real phase. The unwrapped phase map corresponding to (c) Fig. 4(a)
and (d) Fig. 4(b). (e) Plots of the wrapped and unwrapped phases for
both the cases along line AB.

Fig. 5. (a1)–(a4) Input fringe patterns, (b1)–(b4) π∕2, (c1)–(c4) π,
and (d1)–(d4) 3π∕2 phase-shifted fringe patterns. (e1)–(e4) are the
retrieved phase distributions using the proposed D4-PS method.
(f1)–(f4) are the continuous retrieved phase distributions. (g1)–(g4)
are the real phase distributions.

Fig. 6. Results of the proposed method on simulated DSPI fringe
pattern. (a) Simulated DSPI fringe pattern. (b) Denoised fringe pat-
tern. (c–e) π∕2, π, and 3π∕2 phase-shifted fringe patterns using the
proposed method. (f ) Retrieved wrapped phase distribution map.
(g) Continuous retrieved phase. (h) Real phase distribution map.
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pattern of Fig. 6(a). The obtained and real unwrapped phase
maps of the DSPI fringe patterns are shown in Figs. 6(g) and
6(h), respectively. The denoising of the DSPI fringe pattern
is done in order to obtain the phase distribution with good
accuracy.

The performance of the proposed method is evaluated on
the basis of the Q index and EPI. The obtained metric values
show that the proposed method is robust and effective for
evaluating the phase information from a single fringe pattern
in digital interferometric techniques.

Finally, the experimental evaluation of the proposed method
was tested on the fringe pattern shown in Fig. 7(a) (kindly pro-
vided by 4D Technology), obtained by DSPI while looking at
an aluminium transducer suspension assembly from a hard
disk drive. Figure 7(b) shows the filtered fringe pattern;
Figs. 7(c)–7(e) show the three π∕2 phase-shifted speckle fringe
patterns, and Fig. 7(f ) shows the wrapped phase distribution
map obtained with Eq. (8). The unwrapped phase distribution
map is shown in Fig. 7(g) which is almost identical to the
unwrapped phase distribution map obtained from three π∕2
phase-shifted fringe patterns experimentally recorded and pro-
vided by the 4D Technology. Figure 7(i) shows the plots along
the line AB for both unwrapped phase distributions.

In summary, a digital D4-PS method is proposed that is able
to extract the phase distribution from a single fringe pattern.
The phase shifting is realized digitally by computing the
first-, second-, and third-order Riesz transform components
of the single fringe pattern. Nine Riesz components are ob-
tained and combined to generate three π∕2 phase-shifted fringe
patterns. The simulation results show that the D4-PS method

provides promising results quantified in terms of theQ and EPI
image metrics. The performance of the proposed D4-PS
method is verified on various fringe types. Additionally, the per-
formance of the method is demonstrated on experimental DSPI
data, where the retrieved phase is compared with the obtained
phase by using phase-shifting interferometry, and it is found
that the proposed method provides the phase information with
high accuracy. The proposed method is reliable and can replace
the conventional phase-shifting techniques which are more
expensive, sensitive to vibration and turbulence, and time-
consuming when it comes to calibrating the hardware to per-
form the phase-shifting procedure.
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